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Introduction

Introduction =

Cognitve Radio Ea

@ Cognitve Radio is suggested as one of the solution to mitigate
spectrum scarcity problem.

@ Opportunistic spectrum access is the dynamic spectrum access
mechanism where secondary users opportunistically access the
underutilized spectrum.

@ The goal of secondary user is to find and subsequently transmit in
vacant spectrum with minimal interference to Primary User.

@ Reinforcement Learning can be used to predict next transmission
opportunities.

@ We have shown that OSA scenario can be modeled as a multi-armed
bandit problem?!.

Wassim Jouini et al. “Upper confidence bound based decision making
strategies and dynamic spectrum access’. In: International Conference on
Communications, ICC’10. May 2010.
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State of the art for spectrum allocation mainly considers:

@ Probabilistic Resource Allocation algorithms

@ Genetic Algorithms
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@ Opportunistic Spectrum Access: adapt to time-varying channel state.

@ Channel State: free (1) or occupied (0).

@ Limited Sensing: can sense and access M channels (1 channel in our
work) out of K channels in each slot.

Which channel to sense and subsequently transmit in each.slot?
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Multi-Armed Bandit Problem
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Introduction =

Reward4

@ K possible actions (one per machine = arm)
@ Reward distribution in general differs from one arm to the another.

@ The player must use all his past actions and observations to essentially
learn the quality of these arms (in terms of their expected reward).

@ You play for period of time to maximize reward in the long run
(expected utility)
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@ Which is the best action/arm/machine?

@ What sequence of actions to take to find out optimal machine and to
maximize the expected reward?
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Multi-Armed Bandit Problem

Exploration Vs Exploitation Dilemma

@ Exploration: striving for information

@ Exploitation: striving for reward

" — b

Reward1 Reward2 Reward3 Rewarda

Suppose, at time t you have arrived at reasonable estimates 7(t) of the
true values r(t)
Dilemma:

@ You can't exploit all the time; you can’t explore all the time
@ You can never stop exploring; but you could reduce exploring
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Multi-Armed Bandit Problem
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Choose the best channel to transmit at the next time step based on
history.

User or player = Secondary user
Slot machines (arms) = Frequency bands

Reward = channel's state (e.g., free or occupied)

Action = Senses a channel

2Wassim Jouini et al. “Upper confidence bound based decision making
strategies and dynamic spectrum access”’. In: International Conference on
Communications, ICC’10. May 2010.
3Wassim Jouini, Christophe Moy, and Jacques Palicot. “Decision making for
cognitive radio equipment: analysis of the first 10 years of exploration”. In:
EURASIP Journal on Wireless Communications and Networking 2012.26 (Jan.
2012).
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Performance Measure: Regret

ri(t): reward achieved by policy A at time t from arm i
ri(t) is assumed to be Bernoulli distributed r'(t) € {0,1}
ik

*

o
° expected reward of machine f

@ u*: expected reward of optimal machine
o

Regret is the expected reward loss after n sensing due to the fact that
the policy does not always sense the optimal channel.

RA(n) = nu* ZE[r
Finding a policy which has minimum growth rate of regret RA(t)
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UCB1 policy is presented in*.
@ Each arm is a frequency band
T'(n)

By, Tin) = - > AT +

s=1

Where, T'(n) is number of times an arm i has been sensed up to time n.

Select an arm with highest B,’; Ti(n)

@ Sum of an exploration and exploitation term.

@ Intuition: Select an arm that has a high probability of being the best,
given what has been observed so far

o The Br"“T,-(n) index is upper confidence bound on

*Peter Auer, Nicold Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis of
the Multiarmed Bandit Problem"”. In: Machine Learning 47.2-3 (May 2002),
pp. 235-256.
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@ Markov MAB problem is more suitable for modeling OSA formulation.

@ The state (Occupied or Free) of a channel is assumed to be evolved
as a Markov chain.

@ Reward is a function of the observed state of a channel or Markov
chain.

@ Possible to assume observed reward as a channel condition due to
non-binary Markovian reward assumption.

@ M channels (1 in our work) out of K channels are-sensed.
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Markovian Multi-Armed Bandit Problem
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PO1

(Occupied)

P10

State transition probability

o After a channel j is sensed in state i € {0, 1}, the probability that the
channel is in state 1 after t slots is given by the t-step transition
probability py,(t) of the Markov chain.

o Reward r{(t) is observed reward in state 1 of channel i at time t.
o Independent channels (arms) with fully observable states S’(t).
@ Two Formulation: Rested or Restless
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Rested Markov Multi-Armed Bandit

Only sensed channel changes state and offers reward.

Passive arms remain frozen.

(]

State in which we next observe an arm is independent of the time
elapsed between consecutive actions of that arm.

@ UCB1 policy was extended for rested Markov Multi-Armed Bandit
Problem®.

5Cem Tekin and Mingyan Liu. “Online algorithms for the multi-armed bandit
problem with markovian rewards”. In: Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on. IEEE. 2010,
pp. 1675-1682.
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Restless Markov Multi-Armed Bandit

@ Passive arms may change state and offer reward®.

@ State in which we next observe an arm is dependent on the time
elapsed between two consecutive actions.

@ Optimal Policy is no longer staying with one arm.

@ Require to learn optimal way to switch among channels based on past
observations (infinite possibilities).

@ Optimal policy structure is unknown.

o PSPACE-hard.

%Haoyang Liu, Keqin Liu, and Qing Zhao. “Learning in a Changing World:
Restless Multiarmed Bandit With Unknown Dynamics”. In: IEEE Transactions
on Information Theory 59.3 (2013), pp. 1902-1916.
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@ OSA modeled as multi-armed bandit process.
@ Consider two different scenarios

o Assume iid reward process with Bernoulli distributed reward.
e Assume Markovian reward process

Goal: Select an arm more often which has the highest expected mean
reward.
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System Model: i.i.d. Rewards
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@ Goal: evaluate K possible channels for transmission.

@ Which one is most effective?

K Resource to allocate
e In the later stage of allocation, greater fraction of time should be
assigned to a channels, which have found to be vacant more during the
earlier stage.

o Bernoulli distributed bounded reward ri(t) = {0, 1}.

o Reward r/(t) = 0 if the channel found to be occupied.

o Reward ri(t) = 1 if the channel found to be free.

o Expected mean reward j of each channel is shown in below table.
channel 1 2 3 4 5 6 7 8 9 10
7 0.12 | 0.14 | 0.18 | 0.22 | 0.26 | 0.40 | 0.55 | 0.60 | 0.70 | 0.85
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Numerical Analysis

Result: i.i.d. Rewards
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@ Regret is the expected reward loss after n sensing due to the fact that
the policy does not always sense the optimal channel.

K
RA(n) = " — 1 S BIF ()]
i=1

Cumulative Regret
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Result: i.i.d. Rewards
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Result: Successful transmission and Optimal channel Percentage Supé

o Optimal channel
selection percentage:

Optimal channel and Successful transmission percentage

Number of times given
policy played an optimal
~ channel from total
B number of time steps.
€ 40 : : s @ Successful
% transmission
® = Optimal channel selection UCB1 L = 0.5 percentage (STP):
10| | — Successful transmission percentage UCB1 L = 0.5 .
) ‘ , , Number of times vacant
0 1000 2000 ) 3000 4000 5000

Time (1) slot is detected from
total time steps.
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System Model: Markovian Rewards
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o Reward r{(t) if the channel found to be occupied state Py.

o Reward r{(t) if the channel found to be free state P;.

@ State transition probabilities P’ and respective mean reward ' is

given below:
channel 1 2 3 4 5 6 7 8 9 10
Po1 0.20 | 0.30 | 0.40 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80
P1o 0.70 | 0.65 | 0.55 | 0.50 | 0.45 | 0.40 | 0.37 | 0.35 | 0.30 | 0.25
) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
rn 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.55 | 0.60 | 0.70 | 0.80
w 0.12 | 0.14 | 0.18 | 0.22 | 0.26 | 0.31 | 0.38 | 0.43 | 0.52 | 0.63
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Numerical Analysis

Result: Markovian Rewards
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Numerical Analysis

Result: Markovian Rewards
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Experimental Setup for OSA’ B ieTR O
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o Left: Primary network transmission.
@ Right: One secondary user learning (UCBL1 algorithm).
@ Energy detector as a sensor at receiver side.

"Clément Robert, Christophe Moy, and Honggang Zhang. “Opportunistic
Spectrum Access Learning Proof of Concept”. In: SDR-WinnComm’14.
Schaumburg, United States, Mar. 2014, 8 pages.
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Experimental Results for OSA B ieTR O
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o Left: Empirical average of vacancy of 8 channels.
@ Right: UCBI1 indexes for each channel.
o Middle: UCB1 results.
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@ Bandit problem: starting point for many application and
context-specific tasks.

@ Simple and efficient upper confidence bounds based policies for the
bandit problem as an application on cognitive radio with known
bounded support with uniform logarithmic regret

@ Compared to iid assumption Markovian assumption facilitates to
consider channel condition.

@ Lots of open areas for research

o Extend single user to the Multiple user with better coordination.
e What if the reward distribution is non-stationary for Markov

multi-armed bandit?
e Consider a channel quality and other criteria for the channel selection

with the goal of energy efficiency.
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For further information please refer

@ SCEE research team web site:

@ http://www.rennes.supelec.fr/ren/rd /scee/
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